plotCorrelation.Rd
plot PCA or heatmap for multiple bamfiles. The correlation is calculated by the counts in promoter regions.
plotCorrelation( objs, txs, seqlev = intersect(seqlevels(objs[[1]]), seqlevels(txs)), upstream = 2000, downstream = 500, type = c("heatmap", "PCA"), ... )
objs | an object of GAlignmentsList |
---|---|
txs | GRanges of transcripts |
seqlev | A vector of characters indicates the sequence levels. |
upstream | numeric(1) or integer(1). Start position of promoter. Default is 2000 |
downstream | numeric(1) or integer(1). End position of promoter. Default is 500 |
type | Figure type, heatmap or PCA plot. |
... | parameters could be passed to downstream functions such as plot for pca or heatmap for heatmap. |
A invisible object of GRanges with counts
The correlation will be calculated by the correlation of insertion sites within promoter regions. Even the sequencing is paired-end, please treat it as single ends.
Jianhong Ou
#>#>#>#> #>#>#> #>#> #>#>#> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #>#>#> #>#>path <- system.file("extdata", package="ATACseqQC", mustWork=TRUE) bamfiles <- dir(path, "*.bam$", full.name=TRUE) gals <- lapply(bamfiles, function(bamfile){ readBamFile(bamFile=bamfile, tag=character(0), which=GRanges("chr1", IRanges(1, 1e6)), asMates=FALSE) }) library(TxDb.Hsapiens.UCSC.hg19.knownGene) txs <- transcripts(TxDb.Hsapiens.UCSC.hg19.knownGene) plotCorrelation(GAlignmentsList(gals), txs, seqlev="chr1")