Figure 3 Dip-C

Figure 3 Dip-C highlights the geomeTriD package, illustrating its ability to visualize 3D models derived from Dip-C, along with multiple genomic signals mapped onto single-cell 3D structures.

Load Libraries

library(geomeTriD)
library(geomeTriD.documentation)
library(GenomicRanges)
library(TxDb.Hsapiens.UCSC.hg38.knownGene)
library(org.Hs.eg.db)
library(colorRamps)

Present single cell 3D structure for human Dip-C data

This data were downloaded from GEO with accession GSE117874. We will first present the GM12878 cell 3 with all chromosomes.

## set supperloop positions
supperloops <- GRanges(c('Xa:56800000-56850000',
                         'Xa:75350000-75400000',
                         'Xa:115000000-115050000',
                         'Xa:130850000-130900000',
                         'Xb:56800000-56850000',
                         'Xb:75350000-75400000',
                         'Xb:115000000-115050000',
                         'Xb:130850000-130900000'))
names(supperloops) <- c('ICCE', 'x75', 'DXZ4', 'FIRRE',
                        'ICCE', 'x75', 'DXZ4', 'FIRRE')
supperloops$label <- names(supperloops)
supperloops$col <- c(2:5, 2:5) ## set colors for each element
supperloops$type <- 'gene' ## set it as gene

## set the data folder, all data are available in the extdata folder of this package
extdata <- system.file('extdata', 'GSE117874', package='geomeTriD.documentation')
hickit_3dg <- dir(extdata, '3dg', full.names = TRUE)
## load the data
hickit <- import3dg(hickit_3dg, parental_postfix=NULL)[[1]]
## subset sample chromosome information to avoid the tool overload
hickit <- hickit[seq_along(hickit) %in% 
                   sample.int(length(hickit), size = 5000) |
                   seqnames(hickit) %in% c('Xa', 'Xb')]
## set colors to emphersize the Xa and Xb
col.backbone <- gray.colors(n = length(seqlevels(hickit)))
names(col.backbone) <- seqlevels(hickit)
col.backbone['Xa'] <- 'brown'
col.backbone['Xb'] <- 'orange'

cell3 <- view3dStructure(hickit, feature.gr = supperloops,
                renderer = 'none', resolution=1,
                col.backbone = col.backbone, lwd.backbone = 0.25)
backbone <- extractBackbonePositions(cell3, names(cell3)[grepl('backbone', names(cell3))])
supperloop_spheres <- createTADGeometries(supperloops, backbone, alpha = 0.8)
## Warning in createTADGeometries(supperloops, backbone, alpha = 0.8): input tad
## has duplicated label. Please keep it unique.
threeJsViewer(cell3, supperloop_spheres)

We will then present the four supperloop anchors in chrX of GM12878 cell with segment and sphere style.

hickit <- import3dg(hickit_3dg, parental_postfix=c('a', 'b'))[[1]]
## split it into maternal and paternal 3D structures.
hickit.a <- hickit[hickit$parental=='a'] ## mat
hickit.b <- hickit[hickit$parental=='b'] ## pat
## delete the parental information
hickit.a$parental <- hickit.b$parental <- NULL
## set data range
range <- GRanges('X:1-155270560')
## prepare the coordinates for the four superloops. 
supperloops <- GRanges(c('X:56800000-56850000',
                      'X:75350000-75400000',
                      'X:115000000-115050000',
                      'X:130850000-130900000'))
names(supperloops) <- c('ICCE', 'x75', 'DXZ4', 'FIRRE')
supperloops$label <- names(supperloops)
supperloops$col <- 2:5 ## set colors for each element
supperloops$type <- 'gene' ## set it as gene
## subset the data by given range
hickit.a <- subsetByOverlaps(hickit.a, range)
hickit.b <- subsetByOverlaps(hickit.b, range)
hickit.a <- alignCoor(hickit.a, hickit.b)
## prepare the backbone colors
resolution <- 3
backbone_colors <- matlab.like2(n=resolution*length(hickit.a))
## add the superloops as segments
c1 <- view3dStructure(hickit.a,
                      feature.gr=supperloops,
                      renderer = 'none',
                      region = range,
                      resolution=resolution,
                      show_coor=FALSE,
                      lwd.backbone = 0.25,
                      col.backbone = backbone_colors,
                      lwd.gene=6)
c2 <- view3dStructure(hickit.b,
                      feature.gr=supperloops,
                      renderer = 'none',
                      region = range,
                      resolution=resolution,
                      show_coor=FALSE,
                      lwd.backbone = 0.25,
                      col.backbone = backbone_colors,
                      lwd.gene=6)
c2 <- lapply(c2, function(.ele) { ## put pat to right pannel
  .ele$side = 'right'
  .ele
})
## view the data
threeJsViewer(c1, c2, title = c('GM12878 cell 3 mat', 'GM12878 cell 3 pat'))
#widget <-threeJsViewer(c1, c2, title = c('mat', 'pat'))
#tempfile <- 'Fig4.html'
#htmlwidgets::saveWidget(widget, file=tempfile)
#utils::browseURL(tempfile)
## view the superloops as spheres
addFeaturesAsSphere <- function(obj, features, ...){
  backbone <- extractBackbonePositions(obj)
  spheres <- createTADGeometries(features, backbone, ...)
  c(obj, spheres)
}
mat <- view3dStructure(hickit.a, renderer = 'none', region = range,
                       resolution=resolution, show_coor=FALSE,
                       lwd.backbone = 0.25,
                       col.backbone = backbone_colors)
mat <- addFeaturesAsSphere(mat, supperloops, alpha = 0.5)
pat <- view3dStructure(hickit.b, renderer = 'none', region = range,
                       resolution=resolution, show_coor=FALSE,
                       lwd.backbone = 0.25,
                       col.backbone = backbone_colors)
mat <- addFeaturesAsSphere(mat, supperloops, alpha = 0.5)
pat <- addFeaturesAsSphere(pat, supperloops, alpha = 0.5)
showPairs(mat, pat, title = c('GM12878 cell 3 mat', 'GM12878 cell 3 pat'))

Plot all cells to show the cell heterogeneity

## load the processed data.
hickit.a <- readRDS(file.path(extdata, 'hickit.a.rds'))
hickit.b <- readRDS(file.path(extdata, 'hickit.b.rds'))
widgets <- mapply(function(a, b, i){
  mat <- view3dStructure(a, renderer = 'none', region = range,
                         resolution=resolution, show_coor=FALSE, lwd.backbone = 0.25,
                      col.backbone = backbone_colors)
  mat <- addFeaturesAsSphere(mat, supperloops, alpha = 0.5)
  pat <- view3dStructure(b, renderer = 'none', region = range,
                         resolution=resolution, show_coor=FALSE, lwd.backbone = 0.25,
                      col.backbone = backbone_colors)
  pat <- addFeaturesAsSphere(pat, supperloops, alpha = 0.5)
  showPairs(mat, pat, title = paste('cell', i, c('mat', 'pat')),
            background = c("#11111188",
                           "#222222DD",
                           "#222222DD",
                           "#11111188"))
}, hickit.a, hickit.b, names(hickit.a), SIMPLIFY = FALSE)

widgets[[1]]
widgets[[8]]

SessionInfo

## R version 4.5.1 (2025-06-13)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.2 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so;  LAPACK version 3.12.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: Etc/UTC
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] grid      stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] colorRamps_2.3.4                        
##  [2] org.Hs.eg.db_3.21.0                     
##  [3] TxDb.Hsapiens.UCSC.hg38.knownGene_3.21.0
##  [4] GenomicFeatures_1.61.4                  
##  [5] AnnotationDbi_1.71.0                    
##  [6] Biobase_2.69.0                          
##  [7] GenomicRanges_1.61.1                    
##  [8] Seqinfo_0.99.1                          
##  [9] IRanges_2.43.0                          
## [10] S4Vectors_0.47.0                        
## [11] BiocGenerics_0.55.0                     
## [12] generics_0.1.4                          
## [13] geomeTriD.documentation_0.0.5           
## [14] geomeTriD_1.3.15                        
## 
## loaded via a namespace (and not attached):
##   [1] strawr_0.0.92               RColorBrewer_1.1-3         
##   [3] rstudioapi_0.17.1           jsonlite_2.0.0             
##   [5] magrittr_2.0.3              farver_2.1.2               
##   [7] rmarkdown_2.29              fs_1.6.6                   
##   [9] BiocIO_1.19.0               ragg_1.4.0                 
##  [11] vctrs_0.6.5                 memoise_2.0.1              
##  [13] Rsamtools_2.25.1            RCurl_1.98-1.17            
##  [15] base64enc_0.1-3             htmltools_0.5.8.1          
##  [17] S4Arrays_1.9.1              progress_1.2.3             
##  [19] plotrix_3.8-4               curl_6.4.0                 
##  [21] Rhdf5lib_1.31.0             rhdf5_2.53.1               
##  [23] SparseArray_1.9.0           Formula_1.2-5              
##  [25] sass_0.4.10                 parallelly_1.45.0          
##  [27] bslib_0.9.0                 htmlwidgets_1.6.4          
##  [29] desc_1.4.3                  Gviz_1.53.1                
##  [31] httr2_1.1.2                 cachem_1.1.0               
##  [33] GenomicAlignments_1.45.1    igraph_2.1.4               
##  [35] lifecycle_1.0.4             pkgconfig_2.0.3            
##  [37] Matrix_1.7-3                R6_2.6.1                   
##  [39] fastmap_1.2.0               MatrixGenerics_1.21.0      
##  [41] future_1.58.0               aricode_1.0.3              
##  [43] clue_0.3-66                 digest_0.6.37              
##  [45] colorspace_2.1-1            textshaping_1.0.1          
##  [47] Hmisc_5.2-3                 RSQLite_2.4.1              
##  [49] filelock_1.0.3              progressr_0.15.1           
##  [51] httr_1.4.7                  abind_1.4-8                
##  [53] compiler_4.5.1              bit64_4.6.0-1              
##  [55] backports_1.5.0             htmlTable_2.4.3            
##  [57] BiocParallel_1.43.4         DBI_1.2.3                  
##  [59] R.utils_2.13.0              biomaRt_2.65.0             
##  [61] MASS_7.3-65                 rappdirs_0.3.3             
##  [63] DelayedArray_0.35.2         rjson_0.2.23               
##  [65] tools_4.5.1                 foreign_0.8-90             
##  [67] future.apply_1.20.0         nnet_7.3-20                
##  [69] R.oo_1.27.1                 glue_1.8.0                 
##  [71] restfulr_0.0.16             dbscan_1.2.2               
##  [73] InteractionSet_1.37.0       rhdf5filters_1.21.0        
##  [75] checkmate_2.3.2             cluster_2.1.8.1            
##  [77] gtable_0.3.6                BSgenome_1.77.1            
##  [79] trackViewer_1.45.1          R.methodsS3_1.8.2          
##  [81] ensembldb_2.33.1            data.table_1.17.8          
##  [83] hms_1.1.3                   xml2_1.3.8                 
##  [85] XVector_0.49.0              RANN_2.6.2                 
##  [87] pillar_1.11.0               stringr_1.5.1              
##  [89] dplyr_1.1.4                 BiocFileCache_2.99.5       
##  [91] lattice_0.22-7              deldir_2.0-4               
##  [93] rtracklayer_1.69.1          bit_4.6.0                  
##  [95] biovizBase_1.57.1           tidyselect_1.2.1           
##  [97] Biostrings_2.77.2           knitr_1.50                 
##  [99] gridExtra_2.3               ProtGenerics_1.41.0        
## [101] SummarizedExperiment_1.39.1 xfun_0.52                  
## [103] matrixStats_1.5.0           stringi_1.8.7              
## [105] UCSC.utils_1.5.0            lazyeval_0.2.2             
## [107] yaml_2.3.10                 evaluate_1.0.4             
## [109] codetools_0.2-20            interp_1.1-6               
## [111] tibble_3.3.0                cli_3.6.5                  
## [113] rpart_4.1.24                systemfonts_1.2.3          
## [115] jquerylib_0.1.4             dichromat_2.0-0.1          
## [117] Rcpp_1.1.0                  GenomeInfoDb_1.45.7        
## [119] globals_0.18.0              grImport_0.9-7             
## [121] dbplyr_2.5.0                png_0.1-8                  
## [123] XML_3.99-0.18               parallel_4.5.1             
## [125] pkgdown_2.1.3               rgl_1.3.24                 
## [127] ggplot2_3.5.2               blob_1.2.4                 
## [129] prettyunits_1.2.0           jpeg_0.1-11                
## [131] latticeExtra_0.6-30         AnnotationFilter_1.33.0    
## [133] bitops_1.0-9                txdbmaker_1.5.6            
## [135] listenv_0.9.1               VariantAnnotation_1.55.1   
## [137] scales_1.4.0                crayon_1.5.3               
## [139] rlang_1.1.6                 KEGGREST_1.49.1